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Abstract

The computation of derivatives via automatic differentiation is a valu-
able technique in many science and engineering applications. While the
implementation of automatic differentiation via source transformation
yields the highest-efficiency results, the implementation via operator over-
loading remains a viable alternative for some application contexts, such
as the computation of higher-order derivatives or in cases where C++- still
proves to be too complicated for the currently available source transfor-
mation tools. The Rapsodia code generator creates libraries that overload
intrinsics for derivative computation. In this paper, we discuss modifica-
tions to Rapsodia to improve the efficiency of the generated code, first
via limited loop unrolling and second via multithreaded asynchronous
derivative computation. We introduce the approaches and present run-
time results.

1 Introduction

Computing derivatives of numerical models f(z) — y : R™ — IR™, given as
a computer program P, is an important but also computation-intensive task.
Automatic differentiation (AD) [I] provides the means to obtain such deriva-
tives and is used in many science and engineering contexts (refer to the recent
conference proceedings [2, B] and the AD community website [4]).

Two major groups of AD tool implementations are source transformation
tools and operator overloading tools. Among the noteworthy examples of the
latter group are Adol-C [5] and HSL_ADO2 [6]. Both provide the capability to
compute higher-order derivatives. This computation is done by overloading the
operators (e.g., +, *, /) and intrinsic functions (e.g., sin, sqrt) in C++ and
Fortran, respectively, for an active type. In a simplified view, the active type
for a scalar program variable v is the vector of coefficients v = [vg, v1,. .., v,),
up to a certain order o, of the Taylor polynomial vy + vih + voh? + ... 4+ v.h°.
For each of the operators and intrinsic functions one can derive a procedure
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r.v = a.v x b.v;

r.dl_1 = a.v * b.dl_1 4+ a.d1-1 % b.v;

r.dl-2 = a.v * b.d1_2 + a.d1_1 % b.d1-1 4+ a.d1-2 * b.v;

r.dl1.3 = a.v * b.d1_.3 + a.d1_1 * b.d1.2 4+ a.d1_2 % b.d1_1 + a.d1_.3 * b.v;
r.d2_.1 = a.v * b.d2_1 4+ a.d2_1 * b.v;

r.d2_2 a.v x b.d2_2 + a.d2_1 % b.d2_1 + a.d2_2 x b.v;
r.d2.3 = a.v * b.d2.3 4+ a.d2_1 * b.d2_2 + a.d2_2 x b.d2_1 4+ a.d2_.3 * b.v;
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Figure 1: Generated code for overloaded * operators with 0=3, d=2, for r=a*b
and v = [v.v,v.dj1,...,v.dj 3.

that computes the Taylor coefficients of the intrinsic’s result from the Taylor
coefficients of its arguments. For example, for the multiplication w=u*v it is

k
wg = E Uj - Vp—j, for k=0,...,0
=0

The code in the overloaded operators implements the logic for the propagation
of the Taylor coefficients. Because of the relatively high complexity of imple-
menting and efficiently using the reverse mode of AD compared to the forward
mode (see [I]), one assumes that for cases where there are few independents rel-
ative to the number of dependents in for in applications that need higher-order
derivatives (o > 3), the forward mode is appropriate. Without further explana-
tion we assume from here on the use of forward mode. A principal ingredient
for the efficient computation of higher-order tensors is the propagation of Taylor
coefficients in multiple, preselected directions d followed by an interpolation to
compute the tensor elements as described in [7]. There, the first coefficients 2]
related to the n inputs of fform a seed matriz § € IR"*? and the higher-order
coefficients are set to zero. In the wvector forward mode, the active type may
be viewed as a collection of coefficient vectors v/,j = 1,...,d. The propaga-
tion logic, as in the example for w=uxv above, is therefore wrapped in an outer
loop over the directions. In the implementation of Adol-C and HSL_ADO2 these
loops can be found in the body of the overloaded operators.

Based on the observation that, for fixed o and d, unrolling these loops in the
code often leads to a performance advantage, the Rapsodia library generator
was developed [8,[9]. A large number of operators and intrinsics are common to
both C++ and Fortran. Therefore, the code generator was designed to be able
to create both C4++ and Fortran libraries based on common abstract syntax
trees for the operators and intrinsics. An example for the body of an unrolled
overloaded * operator can be found in Fig. (1] The value v.v(= vg) of the original
program variable is shared among all directions. A convenient side effect of the
code generation is that the exploding number of overloading Variantsﬂ that need
to be defined is covered as well. The Rapsodia manual [I0] provides details and
examples for the use of the generator. The application of Rapsodia to practical

1 The operators/intrinsics need to be defined for all possible combinations of active and
passive arguments of different type and precision, including the complex type in Fortran.



problems follows the approach that is known, for example, from Adol-C, and
therefore we will not allude to it in this paper. In various test scenarios with
a variety of compilers and optimization flags, one can observe speedups of up
to 10 over a reference implementation; see [9]. Some uses of the higher-order
derivatives computed with Rapsodia are described in [T11 [9].

2 DMotivation

Despite the sizable speedup factors observed for the Rapsodia-generated code,
the strategy of completely unrolling the loops has limitations. The strategy is
successful for small o and d in part because it permits a flat data structure for
the active type; that is, the program variables for Taylor coefficients have a fixed
offset at compile time, rather than an offset computed based on the loop indices,
which are computed at run time. Thus, completely unrolling loops aids com-
piler optimization. While it would be hard to provably quantify the eventual
speedup originating from this particular strategy of generating code, we deem
it to be essential. Even for moderate o and d, however, the size of the generated
propagation code grows to a point that—combined with the aforementioned
inflation of overloading variants—causes very long compile times. The compile
time increase is most apparent when compiler optimization is set to high levelsﬂ
while we observed diminished speed advantages for large o and d. Even without
access to the internals of the compilers, we can be certain that the code ex-
plosion negatively impacts the compiler optimization algorithms (e.g., register
allocation) and that it is the root cause for the diminished performance. Thus,
some limit to the loop unrolling should be beneficial by reducing the code size
while retaining some of the advantages for larger o and d. In Sec. [3] we discuss
a simple approach and present some results.

Another avenue for improving the efficiency of the derivative computation is
to utilize the availability of multicore hardware. Several forays have already been
made in that direction; see, for instance, [12|[13]14], most of which use OpenMP.
In Sec. [4] we describe the problems we experienced with the use of OpenMP and
the alternative implementation that employs a queue to asynchronously compute
the derivatives with pthreads and with the help of the OpenPA library [I5].

3 Modifying Rapsodia to Limit the Unrolling of
Loops

The principal elements of the computation common to Taylor propagation logic
for overloaded operators can be characterized as follows.

e An outer loop over the directions i =1,...,d.

2 In some cases tests were aborted because the compiler did not finish within 30 minutes.



e Omne or more inner loops within the outer loop over the order k = 0 (or 1),...,0.

Cases where there is more than one inner loop result from scaling coef-
ficients before or after the propagation logic; this is done, e.g., for the
intrinsics s=sin(u) and c=cos(u), where the coefficients are computed
together as

k k
§k = E ﬂjck,j and Ek = E —ﬁjsk,j s
Jj=1 Jj=1

where 0; = j - v; see also [I].

e Additional (optional) nested loops within the inner loop over k =1,...,0
as shown above for 55 and ¢, where the loop bounds depend on k.

An obvious target to control loop unrolling in the code generator is the outer
loop over the directions. The following reasons make this a good candidate.

e To compute complete tensors up to order o, the number of directions
(depending on the number n of inputs to f) is d = ("+;’_1) , that is, d
grows quickly with n and o.

e It allows a uniform split of the data structure and is relatively easy to
implement.

e It is plausible to the user because it is closely related to propagating slices
of the seed matrix S, a known practice for first-order derivatives with large

d.

With the above in mind, we modified Rapsodia so that the user can specify to
the generator the number s of slices into which d may be split. An example
of the resulting code is shown in Fig. In order to ensure a uniform split of

1 [r.v =a.v x b.v;

2 | for(i=0;i<=4;i4+=1)

3| A

4 r.sfi].dl-1 = a.v * b.s[i].d1.1 + a.s[i].d1_1 = b.v;

5 r.s[i].d1_2 = a.v % b.g[i].d1.2 4 a.s[i].d1_1 = b.s[i].d1_1 + a.s[i].d1-2 % b.v;

6 r.s[i].d1-3 = a.v * b.s[i].d1.3 4 a.s[i].d1-1 x b.s[i].d1-2 + a.s[i].d1-2 * b.s[i].
d1-1 + a.s[i].d1-3 * b.v;

7 r.s[i].d2_.1 = a.v % b.g[i].d2_1 4 a.s[i].d2_1 x b.v;

8 r.s[i].d2-2 = a.v * b.s[i].d2-2 + a.s[i].d2_1 = b.s[i].d2_1 + a.s[i].d2_2 * b.v;

9 r.s[i].d2.3 = a.v * b.s[i].d2.3 + a.s[i].d2_1 = b.s[i].d2_2 + a.s[i].d2_2 * b.s]i].
d2_1 + a.s[i].d2.3 * b.v;

10 }

Figure 2: Generated code for overloaded * operators with 0=3, d=10, s=5 for
r=axb; see also Fig.



the data structure and generated loops, the generator may internally increase
d to a multiple of s. Note that to aid compiler optimization, we retain the
flat data structure within each slice s[i], generate the loop with fixed bounds,
and in the Fortran version declare the overloaded operators and intrinsics to be
elemental.

Fig. [3| shows the run time for a test example with a mix of operations but
a large portion of nonlinear intrinsics. We vary s and keep either o or d fixed.
The run times are given for the Intel C++ compiler using the -03 flag. As can
be seen, there is a distinct optimal s that depends—as one would expect—on
both o and d. Diminished performance for s larger than the optimal value is
arguably due to the fact that after a certain point, the body of the loop is too
small to retain the optimization gains of loop unrolling. Likewise, for s smaller
than the optimal value, run times grow with the loop body because the cache
becomes too small.
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Figure 3: Run times for varying d, s, o compiled with icpc -03 .

At least one major argument can be made against our approach, namely,
that we slice without considering the computational complezity of the loop body.
The difference becomes apparent when comparing Fig. [ with Fig.[2] By offering
only the slice number as a control parameter, we split all the direction loops
uniformly and consequently obtain loop bodies that still may be too large for the
compiler optimization, while other loop bodies become very small. Therefore,
for the overall performance one must consider not only o and d but also the
percentage of expensive vs. inexpensive operators and intrinsics used by the
particular application.

In other contexts such as the empirically optimized BLAS in ATLAS [16]
or the loop optimization in Orio [I7], the complexity of the loop body plays
a central role in determining, for instance, to which extent loops are unrolled.
One might expect that gains could be made by using these tools in our context,
and we are not trying to suggest otherwise. Instead we are covering a different
aspect where the application-specific parameters o, d, and s are fixed a priori by
the user and the generator creates the application specific library with fixed loop
bounds where possible and a data structure as flat as possible. While one may be
able to afford autotuning a generic AD library for a specific application context,
it is beyond the scope of this paper to show to what extent the autotuning can



1 [r.v =a.v + b.v;

2 | for(i=0;i<=4;i4+=1)

3 o

4 r.sli].d1-1 = a.s[i].d1-1 + b.s[i].d1_1;
5 r.s[i].d1-2 = a.s[i].d1.2 + b.s[i].d1_2;
6 r.s[i].d1.3 = a.s[i].d1.3 + b.s]i].d1.3;
7 r.s[i].d2_1 = a.s[i].d2-1 + b.s[i].d2_1;
8 r.s[i].d2_2 = a.s[i].d2-2 + b.s[i].d2_2;
9 r.s[i].d2_3 = a.s[i].d2_3 + b.s]i].d2.3;
10 }

Figure 4: Generated code for overloaded + operators with 0=3, d=10, s=5 for
r=a+b; cf. Fig.

or cannot consistently capture and exploit the information that the Rapsodia
generator explicitly uses.

In this sense we see the unrolling discussed here as an improvement to Rap-
sodia that benefits some applications, without making a statement regarding
autotuning tools. The choice of s in practical applications could itself be made
empirically but otherwise will be guided by recommendations in the Rapsodia
manual.

4 Parallel Derivative Computations

The Taylor coefficient propagation logic in the overloaded operators takes the
computed intermediated values of f (i.e., the vg) as input, but all other data
dependencies are among the Taylor coefficients v¥,i = 1,..., 0 themselves, and
the propagations for the individual directions are mutually independent; that
is, there is no data dependency between v] and vl’C if 7 # k. Consequently, the
outer loops over the d directions are easily parallelizable by splitting them into
slices. This approach neatly coincides with the limited loop unrolling strategy
discussed in Sec. 3] Thus, AD computations should be well suited to exploit the
current multicore architectures by distributing the propagation slices across the
cores with the goal of reducing the computation time.

4.1 Parallelism with OpenMP

The opportunity to parallelize the outer loop has been well recognized, and
various attempts have been made to exploit it, in particular with the help of
OpenMP; see [12) [13] [14]. OpenMP is a convenient method to enable shared-
memory parallelism. Parallel execution is triggered by directives that are read
and interpreted by the compiler, the aim being to relieve the programmer of the
arduous task of manually introducing the parallelism, for example, by explicit
multithreaded programming. For our particular context one can use OpenMP
in two fundamental ways.



Coarse-Grained OpenMP The first is coarse-grained parallelism, which
uses a single parallel section covering the entire execution of f, as was done
in, for example, [12]. The outer loop over the d directions is moved from inside
the overloaded operators to the driver code (i.e., the code that calls f). The
code of each overloaded operator contains the loop body for the respective slice
into which the directions were split. Consequently the number of slices can then
simply be equal to the number of cores used. Of course, one can also retain more
than one slice per core and keep a loop over slices in the overloaded operators.
For example, if d=16 on a four-core platform, we can compute 4 directions on
each core and have per core 2 slices with 2 directions each. This approach re-
quires the OpenMP setup to be done manually in the driver; in other words,
the user has to write the logic that first initializes the directions, then calls fin
the parallel loop, and finally collects the results. No specific change is needed
for the Rapsodia code generator or the preparation of the f source code for
overloading. With the Rapsodia library we saw results similar to the ones first
presented in [12].

The major drawback of this approach is that it requires the parallel exe-
cution of the entire f, which at least entails the computation of all the same
intermediate values of f on each core. This can become a serious efficiency
concern if there are intermediate values in f that do not impact the derivative
values of interestﬂ but whose computation contributes a sizable portion to the
cost of computing the entire f. At worst one may be not be able to execute
f in multiple concurrent threads. The parallel execution of f requires f to be
side-effect free or else the side effects will mutually impact the instances of f
that are being executed in parallel leading to inconsistent results. For instance,
f may update global variables shared among all threads or write output to some
file with a hardcoded name, and consequently the parallel runs mutually over-
write the output, leaving an inconsistent result. The latter was the case with
some example codes previously used with Rapsodia. Except for trivial f and
unless f was written already with parallel execution in mind, it is often difficult
to ascertain that fis side-effect free. This poses a significant problem for the
practical application of the approach.

Fine-Grained OpenMP Rather than requiring that the user code first be
made side-effect free, we tried a second approach that we call fine-grained paral-
lelism, also described in [12]. Here, the parallelized loop is still the loop over the
directions, but it remains within the overloaded operators. The major advantage
of this approach is that almost all changes are within the Rapsodia-generated
code, hidden from the user. Done in a naive way, however, this approach incurs
significant overhead each time the parallel loop inside the overloaded operators
is entered and exited. This overhead is caused by the frequent creation and
termination of the OpenMP threads and results in disappointing run times. To
avoid this overhead, we followed the suggestion in [12] and used the orphaning

3These are often called passive variables as opposed to active variables whose type is
changed to trigger the overloaded operators.



concept that allows the threads to be created once and then kept alive through-
out the execution of f. This requires the user to wrap fin the driver in OpenMP
directives; but aside from that, no further changes need to be made to the driver.
However, it again implies parallel execution of f itself and therefore is not us-
able in cases where f instances cannot run in parallel or where one would like
to avoid replicating the computation of the same function values.

Another unfortunate consequence of the orphaning approach is that because
fis executed in parallel, the result variable of an overloaded operator is private
to each thread. Because each thread computes only a portion of the derivative,
after the propagation the threads must exchange their results. We accomplished
this exchange within each overloaded operator and intrinsic by storing the com-
putations of each thread in a global placeholder and then copying these data
to the private result variable of each individual thread. This copying implies a
(different) overhead, and the timing results still are disappointing.

We tested these three parallelization techniques on an 8-core, 64-bit AMD-
processor machine. All tests were conducted with the same benchmarking code
for C++ and Fortran, using the GNU and Intel compilers. The results point to
the fact that OpenMP provides too little control over the threads to be useful
for the fine-grained approach. Therefore, we developed another approach using
a circular queue, with threads controlled explicitly by the library (rather than
the implicit control provided by OpenMP).

4.2 Asynchronous Multithreaded Derivative Computation

As indicated in the beginning of this section, there is a dependency of Taylor co-
efficients’ propagation logic to the fvalues vy, but no dependency in the other
direction. Consequently, the coefficients may be propagated asynchronously
(lagging behind) to f. In other words, we can remove the unnecessary syn-
chronizations between the parallel propagation of the slices and the continued
computation of f that exist in the fine-grained OpenMP approach. The price
for the asynchronicity is a temporary storage of some intermediate values vy,
operation identifiers, and locations (think pseudo addresses of the program vari-
ables) in a circular queue of a predefined size. The queue entries are similar to
the concept of the tape entries in Adol-C.

Each overloaded operator /intrinsic triggers in the (single threaded) execu-
tion of fthe writing of a queue entry; see Fig. |5} The queue entries are read by
multiple threads, each of which (running on its own core) is responsible for prop-
agating its slice of Taylor coefficients. These threads operate asynchronously
from one another, so the writer thread can be ahead of the propagation threads
limited only by the queue size. The propagation threads obtain the propaga-
tion operation from the queue and operate on the Taylor coefficients stored in
thread-specific slices in a work array. The aforementioned locations that are
part of the queue entries are used as indices into the work array. Like Adol-C,
we rely on C++ constructors and destructors to manage the locations for each
active program variable. Fortran does not provide a destructor-like concept.
Without a hook to trigger the release of a location when a variable goes out of



scope, the size of the work array will often become impractical. Orchestrating
this release of locations requires either additional manual source code changes
within f or the use of source transformation tools to automatically inject sup-
port library calls that trigger location releases for active stack variables at the
end of a Fortran function or subroutine and for deallocation calls pertaining to
active variables. Neither approach has as of yet been implemented.

Eventually, the driver logic will want to retrieve the Taylor coefficients of
the outputs and can do so with calls to getCoeff (). The implementation of
getCoeff () waits until all propagation threads have reached it in the queue and
only then retrieves the data from the work array (see Fig. [5]). Synchronization
happens when the queue is empty (seen separately for each propagation thread)
or full or when Taylor coefficients are requested by the driver of f.

We implemented two methods for thread synchronization. The first method
uses traditional locks from the standard Posix pthreads library. The second
method uses atomic operations, such as fetch-and-decrement, from the Open
Portable Atomics (OpenPA) library [15]. OpenPA is a library implementing
atomic primitives for shared-memory applications. Using atomic operations
allows variables to be updated atomically without the need for explicit thread
serialization to protect the update using pthread locks. In our algorithm, each
queue entry contains a shared variable storing information on the work that
was done for that entry. With OpenPA, this variable is an integer representing
the number of threads that have not computed their slice of the derivative
(see the filled circle sections of the queue entries in Fig. [5). This variable is
atomically decremented (i.e., marked done) each time a thread completes its
computation on that entry. In the pthreads implementation, a bitmap is used,
where each thread sets its corresponding bit when it completes its computation.
This update is protected by an explicit pthread lock.

We use three spinlocks (shown in red in the flow charts in Fig. , rather than
condition variables, when waiting for an element to become free (or full) in both
the OpenPA and pthread implementations in order to maximize performance.
Using spinlocks allows a waiting thread to immediately process the free (or full)
entry without the overhead of a system call and context switch associated with
condition variables. Generally speaking, because spinlocks utilize the processor
core while waiting, this approach may have a negative impact when processor
cores are oversubscribed, that is, when more than one thread is scheduled on
the same core. In an oversubscribed environment, using condition variables can
improve processor utilization by allowing waiting threads to yield the core to
other ready threads. In our algorithm, however, we expect that the execution
time of the threads will be dominated by the computation of derivative slices
or by the evaluation of the function and that little time will be spent waiting
on a spinlock. For this reason, there would be no benefit in creating additional
threads and oversubscribing the cores, which may in fact reduce the overall
performance because of cache invalidations associated with context switching
multiple threads on the same core.

One important issue that arose during implementation was that the spin-
locks, used to avoid race conditions, were optimized away by the Intel compiler
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Figure 5: Asynchronous computation with circular queue and flow charts for
queue writer and readers.

when compiled with -03. We are investigating the cause of this, but in the
meantime we have addressed this problem by introducing calls to nanosleep()
in the body of these loops. This workaround likely had a detrimental impact on
the performance results presented here. Well-performing spinlocks are generally
useful and may eventually be provided by OpenPA. Fig.[] shows the runtime
ratios of the serial execution over the two queue implementations. On the ab-
scissas we show the varying o values. All four plots show that, for sufficiently
large o and d, the queue implementation, despite the overhead of writing/read-
ing the queue and managing the pseudo addresses for the work array, becomes
a practical alternative to the serial approach. As one would expect, when opti-
mization is turned on, the o and d values for which the queue approach becomes
viable are larger. Even for this implementation prototype, however, they remain
within the range of the applications for which Rapsodia is intended.

We view the current implementation as a usable proof-of-concept and expect
further improvements to make the queuing approach useful for smaller values
of d and o than those shown in, for example, Fig. @(d)

5 Summary

We presented two avenues for modifying the Rapsodia-generated overloading
libraries. In the purely serial case the introduction of a limit to the unrolling of
the outer loop was shown to be beneficial for sufficiently large derivative order
and number of directions. The observed runtime improvements for the serial
execution reach as high as 50%; see Fig.

To exploit multicore hardware, we investigated different approaches to par-
allelize the derivative computation with Rapsodia. Using OpenMP, we observed

10



)
e
Q
)
4
o

d=8,s=4,pthread m—
0.6 d=8,s=4,0pa ==

d=16,s=4,pthread E—
d=16,s=4,0pa =

d=8,s=4,pthread m—

d=8,s=4,0pa mm—
d=16,s=4,pthread m—
d=16,s=4,0pa E—

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
18 20 10 12

0.5

0.4
0.3
0.2

run time ratio (parallel/serial

run time ratio (parallel/serial

0.1

10 12 18 20

14 16
derivative order
(a): compiled with g++ -00 (b): compiled with icpc -00
4

14 16
derivative order

4

d=8,s=4,pthread m—
35 d=8,s=4,0pa mm—
3 d=16,s=4,pthread H—
25 d=16,s=4,0pa E—

d=8,s=4,pthread m——
35 d=8,s=4,0pa mm—

3 d=16,s=4,pthread m—
25 d=16,s=4,0pa E—

2
1.5

run time ratio (parallel/serial)
(5]
run time ratio (parallel/serial)

1 1
05 05
0 0
10 12 14 16 18 20 10 12 14 16 18 20
derivative order derivative order
(c): compiled with g++ -03 (d): compiled with icpc -03

Figure 6: Runtime ratios plotted over varying o for combinations of (d, s, imple-
mentation) and compiler/optimization levels set up for 4 propagation threads
and executed on an 8-core, 64-bit AMD-processor machine.

good results similar to those of previous studies for an approach that requires
the user to explicitly parallelize the execution of the target function f. This
approach does not require changes to the Rapsodia code generator; instead, all
modification work has to be done by the user. Because fis executed in multi-
ple concurrent threads it must be side-effect free, which may not always be the
case. Even if it is side-effect free, the efficiency can be can severely diminished
because the same function values are computed multiple times. Alternative
approaches with OpenMP that attempt to address these concerns imply a sub-
stantial overhead resulting in disappointing run times and therefore have been
abandoned.

We introduced an alternative approach that uses explicit multithreaded pro-
gramming to enable the asynchronous parallel computation of the Taylor coef-
ficients. Here, the model f itself is not executed in parallel and we therefore
do not require it to be side-effect free. While the implementation is still in
the proof-of-concept stage, these timing results demonstrate the strength of the
asynchronous approach for computing f with higher d and o.

The results also demonstrate the superiority of the OpenPA-aided implemen-
tation compared to the implementation that has to rely on only the pthread
library. The OpenPA implementation avoids some overhead incurred with
pthread interfaces by using atomic hardware operations to modify any shared
data.

While we were analyzing the performance of the current implementation,
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the cost of frequently locking and unlocking pthread locks became especially
apparent for the logic that guards the propagation threads operations against
the dynamic reallocation of the work array. The current prototype lacks the
logic required to safely reallocate the work array to a different address without
locks, but this will be added in the near future.

The notable absence of Fortran results for the asynchronous approach has
already been explained by the lack of a destructor in Fortran. The suggested
alternatives will be pursued in future work.

Additional future work entails further optimizations to the queue implemen-
tation, as well as testing on more platforms, e.g. the Blue Gene/P and the next
generation Intel and AMD CPUs with an increased number of cores.
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